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PBL-Aalborg Model 
(Problem-based 
learning)

Inaugurated in 
1974

22,000 students 
2,300 faculty 

Aalborg

Esbjerg Copenhagen

Adapted from Wikimedia Commons: https://upload.wikimedia.org/wikipedia/commons/c/c1/Denmark_regions.svg
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To City Center (5 km)

E.T.@AAU

New University Hospital
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PV Systems Research Program
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Focus areas:
 Control and topologies of PV inverters
 Grid integration of PV power
 Reliability of PV inverters
 PV and energy storage integration
 Electrical characterization and fault detection in PV panels 

and arrays
 Electroluminescence and infrared thermography - based 

diagnostics

www.pv-systems.et.aau.dk

http://www.pv-systems.et.aau.dk/
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Research Infrastructures
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http://www.et.aau.dk/laboratories/
and More…

A world-class testing center.
Supporting fundamental research, PoC and facilitate development and
validation of industry products.

+
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Outline

• Introduction

• Reliability of power electronics in PV systems

• Design for Reliability

• Practical/Industry application

• Conclusion
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Outline

Reliability of power electronics in PV systems
 Demands to lower LCOE
 Failures in PV systems
 Wear-out of components

10
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State of the Art – Renewable Evolution

11

Global Renewable Energy Annual Changes in Gigawatt (2000-2020)

(close to 3000 GW in total)
1. Hydropower also includes pumped storage and mixed plants;
2. Marine energy covers tide, wave, and ocean energy
3. Solar includes photovoltaics and solar thermal
4. Wind includes both onshore and offshore wind energy

(Source: IRENA, “Renewable energy capacity statistics 2020”, http://www.irena.org/publications, March 2020)

http://www.irena.org/publications
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State of the Art Development – PV Power
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 More significant total capacity (45 % non-hydro renewables).
 Fastest growth rate (22 % between 2018-2020, 33% in 2018).

Global installed solar PV capacity (until 2020): 714 GW, 2020: 127 GW
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Future Target
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In 2017, DOE’s Solar Energy Technologies Office (SETO) announced that the industry had 
achieved the 2020 cost goal for utility-scale solar of 6¢ per kilowatt hour (kWh).

Increasing competitiveness by lowering Cost of Energy

*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or 
state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010–17.
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How to integrate?
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General Photovoltaic power conversion (grid integration)

 Photovoltaic Effect
Power generation is dependent on the ambient conditions

 Power Electronics 
Power converters are essential to realize the power transfer

 Power Grid 
Synchronous generator governed system with fixed freq. and voltage
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PV inverter system configurations

16

 Single-phase
 Hundreds watts
 Small systems

Module Converter DC Grid String/Multistring Converter Central Inverter

 DC grid  AC grid
 Single-/three-phase
 Several kilowatts
 Small systems /

resisdential

 Single-/three-phase
 1~30 kW applications
 Residential/commercial

 Three-phase
 30~ kW
 Commercial /

utility-scale

Chapter 03 in Renewable energy devices and systems with simulations in MATLAB and ANSYS, Editors: F. Blaabjerg and D.M. Ionel, 
CRC Press LLC, 2017 
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Market size of different PV configuration
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Center and String Inverters are dominating the market

(market share in respect to the central inverter – the base value)
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Examples
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String inverter solution

Rooftop-installed PV systems: (a) PV arrays with a total rating of 60 kW installed on the
roof of Aalborghus High School in Denmark and (b) power electronic converters with the schematic 
are installed within the building and are connected to the AC grid.
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Demands on PV Systems
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Power converter – key enabling technology for PV integration
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Failure in Photovoltaic systems
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Inverters are accounted for a majority of failure event & energy loss

[1] “PV System Reliability — An owner’s perspective” SunEdison 2012.
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• Reliability (availability) is the key performance parameter of PV systems
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An example of field experiences in PV application
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Source: P. Hacke, S. Lokanath, P. Williams, A. Vasan, P. Sochor, G. TamizhMani, H. Shinohara, and S. Kurtz, "A 
status review of photovoltaic power conversion equipment reliability safety and quality assurance protocols", 
Renewable and Sustainable Energy Reviews, vol. 82, no. 1, pp. 1097-1112, Feb. 2018.

PV Inverter failure component breakdown from three reports (in percentage), primarily for central inverters.  
(IGBT-Insulated gate bipolar transistors, GFIs – around fault interrupters)
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Failure in power electronics systems
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Real-field examples – it does not look good…

[1] https://twitter.com/roystonfire/status/993074938063015936/photo/1
[2] https://blog.logisense.com.au/2020/09/growatt-sungold-3000-failure.html

• Failure of small component can have a 
significant impact

• Cost, safety, reputation, etc.
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Scientific challenges
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Multi-components/multi-failure sources

System Level Application

Hardware Software Human Error

Power 
Semiconductos

Passive
Components

Other
Components

Transistors Diodes Magnetics Capacitors PCB Gate Drivers Fuses

f1 f2 f7 f3 f4 f5 f6 

Wear-out Catastrophic

Assembly
Level

Component
Level
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Reliability, Unreliability, and Failure rate
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Probability Density Function (pdf) and its application to reliability.
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Why do we have failure?
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Bathtub curve

Operating time (t)

Early 
failures
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failures

Start-up/Commissioning
• Decreasing failure rate
• Infant mortality

Normal operation
• Constant failure rate
• Random failures

End-of-life
• Increasing failure rate
• Wear-out
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Component degradation

26
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Component degradation
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Failure

• Irradiation 
(Output power)

• Temperature
• Humidity
• Vibration
• ….

Failure
Stress-strength analysis
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Outline

Design for Reliability
 Mission profile
 Electro-thermal modelling
 Reliability evaluation

28
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Motivation for more reliable product design
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Customer 
expectations

 Replacement if 
failure

 Years of warranty

 Low risk of failure
 Request for maintenance

 Peace of mind
 Predictive 

maintenance
Reliability target  Affordable returns 

(%)  Low return rates  ppm return rates

R&D approach  Reliability test
 Avoid catastrophes

 Robustness tests
 Improve weakest 

components
 Design for reliability
 Balance with field load

R&D key tools  Product operating tests  Testing at the limits

 Understanding failure 
mechanisms, field load, 
root cause, …

 Multi-domain simulation
 …

Past Present Future

Product + Service
Data + Physics of Failure
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Motivation for more reliable product design
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Reduce costs by 
improving reliability upfront

Source: DfR Solutions, Designing reliability in electronics, CORPE Workshop, 2012.  
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Design for reliability of power electronics
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Application of DfR in PV inverter design
• Expected failure at the end of life – reduce O&M cost
• No over-designed – reduce system cost

System 
Specifications

Component 
Design (Selection)

Installation/
Operation

Mission profile
Available area

Module efficiency
System architecture

Panel/module
Converter/inverter

Structural BOS
Electrical BOS

Software

Labor
Construction permit

Administration
Monitoring

Specified End of Service
Expected Failure Rates

Reliability 
Specifications

?

Design for Reliability

Reliability 
Evaluation
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Key aspects in reliability analysis  
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Failure Identification
• Critical components
• Failure mechanisms
• Major stress & strength

Stress Analysis
• Mission profile translation
• Multi-physics stress
• Multi-timescale stress

Strength Modeling
• Component-level
• Accelerated test
• Degradation model

Reliability Mapping
• Stress characterization
• Variations & statistics
• Multi-component system

Reliability Performance

Indirect Metrics
• Thermal loading
• Voltage or current 

stress
• Stress margin

Direct Metrics

• Bx lifetime
• Robustness
• Failure probability

Reliability/unreliability vs. time 
Thermal loading of IGBT chips 

[1] F. Blaabjerg and K. Ma, "Future on Power Electronics for Wind Turbine Systems,"

Accelerated test of IGBT
Translate mission profile 

to device loading

Critical components in 
Power electronics



Online Seminar: Chulalongkorn University | Ariya Sangwongwanich | Feb, 2023

Reliability evaluation of PV inverters
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Thermal stress modeling (requirement)
• Mission profile (i.e., solar 

irradiance, ambient temperature)
• Electrical model (i.e., power 

losses, control strategy)
• Thermal model M

is
si

on
 p
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fil

e

PV model MPPT

PV inverter

Thermal stress modeling

Ploss

Tj

C

Thermal domainElectrical domain

Cycle countingLifetime model

Monte Carlo 
simulation

Reliability 
block diagram

Fn(t)

Damage calculation

Reliability assessment

Tjm

dTj

Bx

Thermal model

Ambient temp.

Tj
Model 

parameters

Component-level System-level

Damage

Fsys(t)

Three steps modeling approach

Damage calculation (requirement)
• Physic-of-failure (failure mode)
• Lifetime model
• (Cycle counting)

Reliability assessment (requirement)
• Parameter variation
• Monte Carlo simulation
• Reliability block diagram
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Example of PV inverter design
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Boost 
Converter 

ipv vpv vg

ig

PV Inverter
LCL-filter

vdc
PWMinvPWMb

Grid
Zg

Load
*

L
Cdc

PV Arrays Linv Lg

CfCpv

Boost 
Control

Inverter 
Controlvdc

Parameter Value

PV inverter rated power 6 kW

Boost converter inductor L = 1.8 mH

DC-link capacitor Cdc = 1100 µF

LCL-filter Linv = 4.8 mH, Lg = 2 mH,
Cf = 4.3 µF

Switching frequency Boost converter: 16 kHz
Full-Bridge inverter: 8 kHz

DC-link voltage Vdc = 450 V

Grid voltage (RMS) Vg = 230 V

Grid frequency 50 Hz
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Lifetime model of components
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Power devices (e.g., IGBT)

Component Failure Mechanisms Stress Factors Lifetime Model

Power devices 
(e.g., IGBT)

• Bond wire lift-off
• Solder degradation

• Thermal cycling (∆Tj)
• Mean temperature (Tjm)
• Cycle period (ton)

Cycle to failure:
Nf(∆Tj, Tjm, ton)

DC-link capacitors 
(Al-cap)

• Electrolye vaporization
• Increase of leakage 

current

• Hotspot temperature (Th)
• Operating voltage (Vdc)

Time to failure:
Lf(Th, Vdc)

DC-link capacitors (Al-cap)

Insulated-Gate Bipolar Transistor Aluminum Electrolytic Capacitors
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Power losses modeling
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IGBT characterization
■ 1200V/50A IGBT from Infineon (FS50R12KT4_B15)
■ Datasheet parameter (also verified with double-pulse testing)
■ Look-up table

Switching losses Conduction losses
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Thermal modeling
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Real-field thermal stress (IGBTs)
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Real-field thermal stress (DC-link capacitors)
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Component-level analysis
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Mission profile (one year) Corresponding damage in the component

The reliability can be determined from the weakest component in the system ( e.g., the highest 
accumulated damage)
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Converter-level analysis

Weibull Analysis

► Represent development of failure rate overtime  
(e.g., from 0 % to 100 % failure)

► Bx lifetime: Time when x % of population have failed
► From component-level to system-level assessment

Reliability Block Diagram: System-level

4
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Converter-level analysis

42

U
nr

el
ia

bi
lit

y 
(%

)

100

80

60

40

20

0
0         5          10         15         20        25         30         35        40

Life time (years)

B10 lifetime

Ffb(t): Full-bridge module
(four power devices)

Finv(t): 
Inverter  Fs(t): Power device

Fdc(t): DC-link (two capacitors)

Fc(t): 
Capacitor

(b)

Li
fe

tim
e 

D
is

tri
bu

tio
n 

(%
)

10

8

6

4

2

0
0         5          10         15         20        25         30         35        40

Life time (years)
(a)

B10 = 4

 fs(t): Power device
(n samples = 10000)

 fc(t): Capacitor
(n samples = 10000)

B10 = 5

B10 = 11

Parameter variation: Lifetime distribution  Unreliability function



Online Seminar: Chulalongkorn University | Ariya Sangwongwanich | Feb, 2023

Outline

Practical/Industry Application
 Microinverter Case Study
 Impact of PV module size

43
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Micro-Inverter Case Study
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Appearance of the PV Micro-Inverter Configuration of a PV micro-inverter system

Advantages:
 Module-level maximum power point tracking
 Module-level monitoring and troubleshooting
 Lower amperage wires
 Higher safety

Challenges:
 Higher cost-of-energy
 Reliability?

DC-DC stage 

MCU

Inverter stage

Hardware of the 300-W PV MI
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vpv 

ipv 

HF inverter HF transformer InverterRectifier Filter
PV module

DC-DC converter

DC-link

DC-AC inverter and output filter

Grid

vg 

ig 

vdc

idc 

Cdc 
+
vpv
-

+
vdc
-

+
vg
-

idc igipv

Two-stage micro-inverter

45

Key parameters:
 Rated power: 350 W
 Input voltage range: 8-60 V
 AC grid voltage: 230 V
 Hardware efficiency : 96.2 %
 MPPT efficiency: 99.5 %

Compatibility:
 72-cell PV module
 60-cell PV module
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Experimental setup
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Features
• Test under real operating conditions (inverter-level testing)
• Embedded thermocouple at the core of capacitor
• Direct measurement of hotspot temperature

Thermocouple

Aluminum electrolytic 
capacitor

DC-link capacitor with integrated 
temperature sensor

Thermocouple
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Thermal stress analysis
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Reliability evaluation
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Accumulated Damage vs. Energy Yield
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Observation:
 60-cell PV module: Linear-dependency between the damage and energy yield
 72-cell PV module: Exponential-dependency between the damage and energy yield
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Summary

 Reliability of key components in power electronics systems 
is an important aspect to minimize the cost of renewable 
energy

• Power devices (e.g., IGBTs, MOSFETs)
• Electrolytic capacitors (e.g., DC-link)
• Etc. fan, gate driver

 Long-term degradation induced by thermal stress is the 
main factor that limit the useful life of power electronics 
systems – require a proper reliability modeling method

• Thermal stress modeling
• Lifetime estimation (damage calculation)
• Reliability assessment (uncertainty analysis)

49
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