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Research:

O Control and reliability of power electronics systems
L Photovoltaic systems and battery integration

O Multi-level power converters

O https://vbn.aau.dk/en/persons/132201

Teaching:
O PhD course: Photovoltaic power systems, Reliability of power electronics in
PV systems, efc.
0 MSc course: Control of grid connected PV and WT Systems
L Bachelor course: Power electronics
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Department of Energy Technology
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PV Systems Research Program

QUALITY
EDUCATION

Focus areas:
= Control and topologies of PV inverters
» Grid integration of PV power
» Reliability of PV inverters

= PV and energy storage integration G

= Electrical characterization and fault detection in PV panels
and arrays sum%;ms

= Electroluminescence and infrared thermography - based Dw{tuﬂi_mé
diagnostics

WWW.pV-systems.et.aau.dk
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Research Infrastructures

H
Y 4 A world-class testing center.
h— _— Supporting fundamental research, PoC and facilitate development and
— validation of industry products.

BATTERY SYSTEMS TEST
PV SYSTEMS LABORATORY LABORATORY

S POWER PV OUTDOOR T
R P

R ELECTRONICS POW
B D ATORY MONITORING

ILITY LABORATORY

POWER ELECTRONICS ADVAN POWER EMC LABORATORY
COMPONENT ANALYSIS CONVE E
LABORATORY ENERG

and More...

http://www.et.aau.dk/laboratories/
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Outline

 Introduction

* Reliability of power electronics in PV systems

« Design for Reliability

* Practical/Industry application

« Conclusion
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Outline

Reliability of power electronics in PV systems
= Demands to lower LCOE

= Failures in PV systems
= Wear-out of components
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State of the Art — Renewable Evolution

3000 -
- Hydropower - Bioenergy N
2500 — B wind energy [ Geothermal m
Solar energy - Marine energy [ |
2000
v
©
% 1500
2
2,
1000
500
0
» 2010 > 2020

2000 >»
Year

Global Renewable Energy Annual Changes in Gigawatt (2000-2020)
(close to 3000 cwin total)

Hydropower also includes pumped storage and mixed plants;

1.
2. Marine energy covers tide, wave, and ocean energy
3. Solarincludes photovoltaics and solar thermal
4. Wind includes both onshore and offshore wind energy
ot o, (Source: IRENA, “Renewable energy capacity statistics 2020”, http://www.irena.org/publications, March 2020)
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State of the Art Development — PV Power

714
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Annual increase (GW) — 500

— 400
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— 100

]

2020

2001 > 2010
Year

Global installed solar PV capacity (until 2020): 714 Gw, 2020: 127 Gw

= More significant total capacity (45 % non-hydro renewables).
= Fastest growth rate (22 % between 2018-2020, 33% in 2018).
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State of the Art Development — PV Power

35 =
-1
30 |- | Annual growth for renewable electricity generation |
(Data source: IEA, 2018-2020)
:\.? 25 o
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Global installed solar PV capacity (until 2020): 714 Gw, 2019: 127 GwW

= More significant total capacity (45 % non-hydro renewables).
= Fastest growth rate (22 % between 2018-2020, 33% in 2018).
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Future Target

Increasing competitiveness by lowering Cost of Energy

Residential Commercial Utility

60

50

2020 Goal
Achieved

LCOE (cents/kWh, 2017 $)

10 17 20 30 10 17 20 30 10 17 20 30
Year (20xx)

In 2017, DOE’s Solar Energy Technologies Office (SETO) announced that the industry had
achieved the 2020 cost goal for utility-scale solar of 6¢ per kilowatt hour (kWh).

*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or
state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010-17.
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How to integrate?

General Photovoltaic power conversion (grid integration)

Photovoltaic system

Input — — Output
z[)°C o
Slo) i 8™ e 0
Temp. Solar Gener. Converter Filter Transfo. Grid

— —

Electrical power conversion

= Photovoltaic Effect
Power generation is dependent on the ambient conditions

= Power Electronics
Power converters are essential to realize the power transfer

= Power Grid
Synchronous generator governed system with fixed freq. and voltage
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PV inverter system configurations

. ~ DCbus Multiple PV strings
|jDC ¢
J@ =)
~ Tbc )| % § § PV strings
| S PVstring é é
PV panel —bc, | = < E@
J@‘ s | EPLI P & &
T— | Dcll g |2 2= |- J@
PV panel DC, |38 & [P€, % - )= _— = :
] 8% J@ 2 " e 2 M .M
. Eg o v ————1 3 --
< 'DCiih o | e DC ® n o
L ; E S _|_ ® T Y e
Do | 2 i DC-module . Dl § .
-88 bC & .- bDC - converter DC 818 DC |, -~ SO DC .~ T QO DC
£y | | Ik ] EE - Iz 13 s
%E L AC AC AC £l AC §E 2 TAC VLl 'AC

Module Converter DC Grid String/Multistring Converter Central Inverter

= Single-phase = DC grid > AC grid = Single-/three-phase = Three-phase
= Hundreds watts = Single-/three-phase = 1~30 kW applications = 30~ kW
= Small systems = Several kilowatts « Residential/commercial = Commercial /
= Small systems / utility-scale
resisdential
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Market size of different PV configuration

Center and String Inverters are dominating the market

(market share in respect to the central inverter — the base value)

Power optimizer

Micro inverter

f

Central inverter String inverter  Module converter
(more than 100 kWp) (up to 100 kWp) (up to 1 kWp)

n < 98.8%

0 0
1 < 98% 7 < 98.5% 90% < 1 < 95%
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Examples

String inverter solution

Rooftop-installed PV systems: (a) PV arrays with a total rating of 60 kW installed on the
roof of Aalborghus High School in Denmark and (b) power electronic converters with the schematic
are installed within the building and are connected to the AC grid.
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Demands on PV Systems

Power converter — key enabling technology for PV integration

PV Panels
(DC voltage up to 1.5 kV)

N :l ’
’, ~
|

C

DC

- Power optimization
(maximum power point
tracking - MPPT)

- DC voltage/current control

- Monitoring and diagnosis

\J
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Power Converter

Circuit Level
-
Switching Device
Resistor ~ Capacitor
-
00— —T—
Inductor Transformer

Component Level

- Converter controllability

- Conversion efficiency

- Reliability

- Thermal management

- Energy management

- Islanding detection/protection
- Response to grid recovery

- Monitoring and safety

- Communication

Low Voltage (LV) Grid
(AC RMS voltage up to 1 kV)

PCC

AC

\l

MV or HV
Networks

- Power quality (voltage, flicker,
frequency, harmonics, and
power factor)

- Power flow controllability
Supportive Schemes for MV/HV

- Frequency-Watt control

- Voltage-VAr control

- Fault ride-through

- Grid-forming

- Inertia provision
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Failure in Photovoltaic systems

Inverters are accounted for a majority of failure event & energy loss

50
A I Failure event
Energy loss
40 || ay
S
o 30
(@)]
)
[
(O]
e 20
)
o
10
Inverter AC External Other Support Planned Weather Meter

Subsys Structure Subsys Outage Modules station

+ Reliability (availability) is the key performance parameter of PV systems

EW GRg
¢,
4,

5«“((‘ 2 [1] “PV System Reliability—An owner’s perspective” SunEdison 2012. 20
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An example of field experiences in PV application

Source: P. Hacke, S. Lokanath, P. Williams, A. Vasan, P. Sochor, G. TamizhMani, H. Shinohara, and S. Kurtz, "A
status review of photovoltaic power conversion equipment reliability safety and quality assurance protocols",
Renewable and Sustainable Energy Reviews, vol. 82, no. 1, pp. 1097-1112, Feb. 2018.
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PV Inverter failure component breakdown from three reports (in percentage), primarily for central inverters.
(IGBT-Insulated gate bipolar transistors, GFIs — around fault interrupters)
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Failure in power electronics systems

Real-field examples — it does not look good...

T ol

* Failure of small component can have a
significant impact
» Cost, safety, reputation, etc.

[1] https://twitter.com/roystonfire/status/993074938063015936/photo/1
oo, [2] https:/Iblog.logisense.com.au/2020/09/growatt-sungold-3000-failure.html
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Scientific challenges

Multi-components/multi-failure sources

| System Level Application |

I 1
IHuman Error |

o

Assembly i QI Power | ' Other
Level 1 , Semiconductos ,Components
CorEpor}enti :Transistors:: Diodes : : Magnetics : : Capacitors: : PCB : :Gate Drivers: :Fuses:l
[ R e e e i
fz1 12 /3 fa S5 Js /7
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Reliability, Unreliability, and Failure rate

f(t) = pdf of failure
distribution

R()

Hazard rate

F@
f( ¢ f(t
i< fo @
R(z) 1 —F(z)
" DN
\ Time
Time ¢, where reliability 1s calculated
Probability Density Function (pdf) and its application to reliability.
Reliability Function
00 t
R(t) =1—F(¢) :f f(r)ydt =1 —[ f(¢)de
A —00
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Why do we have failure?

Bathtub curve
A

Early Wear-out

. Constant failure rate :
failures failures

Failure/Hazard rate A(?)

>
Operating time (?)
Start-up/Commissioning Normal operation End-of-life
* Decreasing failure rate » Constant failure rate * Increasing failure rate
* Infant mortality * Random failures +  Wear-out

25

,’s%(‘“f Online Seminar: Chulalongkorn University | Ariya Sangwongwanich | Feb, 2023



Component degradation

Stress-strength analysis

Load
variation

Strength
variation

Probability

Failure

Loading condition Inverter capability
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Component degradation

Stress-strength analysis A
Failure
Irradiation
(Output power)
Temperature
A Humidity
Vibration
> Load , "\ Strength
S variation ' ' variation
S I I
8 I I
o I Failure I
I I
I I
| |
I I
| |
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Inverter capability
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Outline

Design for Reliability
= Mission profile

= Electro-thermal modelling

= Reliability evaluation
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Motivation for more reliable product design

Present

Customer > Replacementif Low risk of failure oo e -Of r?ind
. failure . > Predictive
expectations Request for maintenance .
»  Years of warranty maintenance
Reliability target ?;f;;rdable returns Low return rates > PpmMm return rates
(o]
N Robustness tests . ST
R&D approach i is(l;%bggat:t?é - Improve weakest > Design for.rellablllty
Y components »  Balance with field load
» Understanding failure
, _ o mechanisms, field load,
R&D key tools » Product operating tests Testing at the limits root cause. ...
»  Multi-domain simulation
>

Product + Service

Data + Physics of Failure
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Motivation for more reliable product design
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e N

Reduce costs by
improving reliability upfront

1000 x

Cost Of Unreliability
2x More

100 x

CONCEPT DESIGN VALIDATION PRODUCTION

I deas/Sketches B Lost Market Share B Warranty/Recall
. Engineering/Design - Verification/Testing . Prototype Parts
. Specs/Drawings Lost Production

Source: DfR Solutions, Designing reliability in electronics, CORPE Workshop, 2012.

>
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Design for reliability of power electronics

Application of DfR in PV inverter design
« Expected failure at the end of life — reduce O&M cost
* No over-designed — reduce system cost

Mission profile (T T T T \I
Available area S}’Ste“? : Reliability I
Module efficiency Specifications I Specificati I
. pecifications I
System architecture l | |
|
Panel/module : :
Converter/inverter Component I I
Structural BOS Design (Selection) :
Electrical BOS : I
Software I I
| Reliability :
Labor : Evaluation I
Construction permit oo e ,I
Administration it at}o Design for Reliability
Monitoring Operation
Specified End of Service l

@®  Expected Failure Rates

_((‘ :
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Key aspects in reliability analysis

.

Failure Identification

e Critical components
e Failure mechanisms
e Major stress & strength

J

'
Critical components in
Power electronics

Strength Modeling

Component-level
Accelerated test
Degradation model

Stress Analysis

Mission profile translation | = ‘
Multi-physics stress i
Multi-timescale stress

120

.\‘ | N

'“.\ wm ! “"
§> jﬂ M

w\l,

1

3
8

|

88

1500 2000 2500 3000
Number of cyckes (k-]

Accelerated test of IGBT

Thermal loading of IGBT chips

x«EW R%

Reliability Mapping
e Stress characterization

e Variations & statistics
e  Multi-component system

\/

Temperature ('C)
S

o
3

.‘ﬁ‘\‘\'”ﬂ, M f’)
1 < A
o

%0
0 2000 4000 6000 8000 10000
time (s)

Translate mission profile
to device loading

Indirect Metrics

Thermal loading
Voltage or current
stress

Stress margin

Direct Metrics

B, lifetime
Robustness
Failure probability

=n.00

Reliability Performance

Reliability/unreliability vs. time

[1] F. Blaabjerg and K. Ma, "Future on Power Electronics for Wind Turbine Systems," 32
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Reliability evaluation of PV inverters

Three steps modeling approach

Thermal stress modeling

l__é' C]} (PV model ) [ MPPT ]

\ Y Pioss!

Ambient temp.

¢

[ PV inverter ]35] Thermal model

Mission profile

Electrical domain

Thermal domain |

Damage calculation

T \ T ]}

| ! — 4 jm .

i MOdil — | Lifetime model [3 Cycle counting J
s ! a

~

Damage

Reliability assessment

\
J Monte Carlo | £x(?)| Reliability
'l simulation block diagram

B,
—>

>
JF (1)

|
|
|
|
|
1

Component-level

System-level

Thermal stress modeling (requirement)

* Mission profile (i.e., solar
irradiance, ambient temperature)

» Electrical model (i.e., power
losses, control strategy)

e Thermal model

Damage calculation (requirement)
* Physic-of-failure (failure mode)
+ Lifetime model
* (Cycle counting)

Reliability assessment (requirement)
* Parameter variation
* Monte Carlo simulation
* Reliability block diagram

33
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Example of PV inverter design

B PV Inverter .
00st LCL-filter Grid
PV Arrays Converter
" C, JE Liny L Z,
N i Ll G R RS
Cpv T P I&F | TG
; ) AAAA .
iy Vo |PIVM, |, "Mewsm,.,
c g
Boost > Inverter €——— Load
v 1
Control 4 5] Control < £
IGBT Power Op tic/Fiber ¢ Parameter Value
Module PV inverter rated power 6 kW
Boost converter inductor L=1.8mH
DC-link capacitor Cqc = 1100 pF
NN a/ie P Liny =4.8 mH, L, =2 mH,

k L 4

Switching frequency

Boost converter: 16 kHz
Full-Bridge inverter: 8 kHz

DC-link voltage V4 =450V
Grid voltage (RMS) Vy=230V
50 Hz

Measurement

Grid frequency

DSP Controller |

Circuits
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Lifetime model of components

Power devices (e.g., IGBT) DC-link capacitors (Al-cap)
Bond Bond |gRT Bon/dwire
Diode // Bond
Chip Solder '
Base Plate Solder __ |} Substrate
Thermal Grease
Heatsink
Insulated-Gate Bipolar Transistor Aluminum Electrolytic Capacitors

Component Failure Mechanisms Stress Factors Lifetime Model

« Thermal cycling (AT))
* Mean temperature (T;;)
« Cycle period (t,,)

Power devices » Bond wire lift-off
(e.g., IGBT) » Solder degradation

Cycle to failure:
N{AT;, Ty, ton)

» Electrolye vaporization
* Increase of leakage
current

DC-link capacitors
(Al-cap)

* Hotspot temperature (T,) Time to failure:
+ Operating voltage (V) LT, V)

x«EW ﬁ’ob
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Power losses modeling

IGBT characterization

m 1200V/50A IGBT from Infineon (FS50R12KT4_B15)
m Datasheet parameter (also verified with double-pulse testing)

m Look-up table

Switching losses

16
= | Ew(T=150°C) .,
Enf Ny
2 En(Tj=125°C) .-~ .~ 1
2 8 /’/,’/
) L~ _ -
2
8= -

2 - == |
z Eoe(T;= 150 °C)
=== Eot (T; = 125 °C)

00 10 20 30 40 50 60 70 8 90 100

1. (A)

=SBy + Eyy)

st

Conduction losses

100
80 |
: T;=25°C
2 90 T;=125°C
~ 40 \
’ T;= 150 °C
20
O I I I I I I I I
00 05 10 15 20 25 30 35 40 45 5.0
Vee (V)
Ul
con,S __j (t) V (t)dt
0
36
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Thermal modeling

Lumped thermal network (Foster’s model)

T.
OO - . )

Diode TIM  Heatsink

—O— OG-

Junction Case | I \

Z_,: Case-to-ambient

Z;.: Junction-to-case

10° ‘ 10° :
o =z
§10‘1 , 10"
3 N

Steady-state Steady-state
102 ‘ ‘ 1072 - ‘
107 102 10" 10° 10! 10! 10° 10! 10° 10°
o Ry, Time (seconds) Time (seconds)
37
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Real-field thermal stress (IGBTs)
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Real-field thermal stress (DC-link capacitors)

Electrical loading

(mission profile)

[a—
(9]

[S—
S

0.5¢

Solar irradiance (kW/m?)

0.0

24 hours
Time

Thermal loading

(Ta = 25 °C) 65

S5¢

grtg_ Simulation

45 Experiment

35¢

Hotspot temperature (°C)

25

24 hours
Time

W G
e"“g Ro%o
&
P (
&
—
% 3
v,
“ep &
Re ynv®

Online Seminar: Chulalongkorn University | Ariya Sangwongwanich | Feb, 2023



Component-level analysis

Mission profile is translated into damage in components
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The reliability can be determined from the weakest component in the system ( e.g., the highest
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Converter-level analysis

Weibull Analysis
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» Represent development of failure rate overtime
(e.qg., from 0 % to 100 % failure) System Topology

» B, lifetime: Time when x % of population have failed
E | E

» From component-level to system-level assessment : ;
|

Reliability Block Diagram: System-level
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Converter-level analysis

Parameter variation: Lifetime distribution = Unreliability function
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Outline

Practical/lndustry Application

= Microinverter Case Study
= Impact of PV module size

43
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Micro-Inverter Case Study

....... PV Panel 1 IR P\ Panel2 "

PV Panel 3

[ w . WV230 W WV230 |L.- . WV230
- - . -
=3 =] =
E = E 3 ‘,‘
Special PV Special PV Special PV /
Connector Connector Connector P
and cable and cable and cable !

Appearance of the PV Micro-Inverter Configuration of a PV micro-inverter system

Advantages:
= Module-level maximum power point tracking

= Module-level monitoring and troubleshooting
= Lower amperage wires
= Higher safety

Challenges:
= Higher cost-of-energy
= Reliability?
((‘ Hardware of the 300-W PV MI "
<, Online Seminar: Chulalongkorn University | Ariya Sangwongwanich | Feb, 2023
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Two-stage micro-inverter

DC-DC converter DC-AC inverter and output filter
(g A ) (4 N
I | — I + —
J' } { —D'— A 1 i J _n-wr\IrWV\. : iy
Vae = Cdc —I_ -g
HF inverter |HHF transformer|- Rectifier Inverter |[— Filter

DC-link Grid

Key parameters: Compatibility:
= Rated power: 350 W = 72-cell PV module
= |nput voltage range: 8-60 V = ©60-cell PV module
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AC grid voltage: 230 V
Hardware efficiency : 96.2 %
MPPT efficiency: 99.5 %
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Experimental setup

DC-link capacitor with integrated
temperature sensor

Aluminum electrolytic Thermocouple
capacitor I '

Features
Test under real operating conditions (inverter-level testing)

Embedded thermocouple at the core of capacitor
Direct measurement of hotspot temperature
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Thermal stress analysis
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Clear-day condition
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Reliability evaluation

Accumulated Damage vs. Energy Yield

oS ‘
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Observation:
= 60-cell PV module: Linear-dependency between the damage and energy yield
= 72-cell PV module: Exponential-dependency between the damage and energy yield
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Summary

» Reliability of key components in power electronics systems
is an important aspect to minimize the cost of renewable
energy

« Power devices (e.g., IGBTs, MOSFETS)
 Electrolytic capacitors (e.g., DC-link)
» Etc. fan, gate driver

» Long-term degradation induced by thermal stress is the
main factor that limit the useful life of power electronics
systems — require a proper reliability modeling method

« Thermal stress modeling
» Lifetime estimation (damage calculation)
» Reliability assessment (uncertainty analysis)

IGBT Power

Mission profile

Thermal stress modeling
PV model

PV inverter

Ambient temp.

[_ | | Thermal model

T
Electrical domain | / Thermal domain

Damage calculation l

,,,,,,,,,,,,,,

T
‘ T 4
Model | | P~ m .
' parameters | »lLlfetlme modelh%l Cycle counting J
[ ; J
Damage Reliability assessment
v | 3
_| Monte Carlo | Fu()| Reliability >
simulation .| block diagram
| Fy(0)
Component-level | System-level
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Thank you for
your attention!

Ariya Sangwongwanich
ars@energy.aau.dk

Questions?



	Slide Number 1
	About the presenters
	Aalborg University - Denmark
	Aalborg University - Campus
	Aalborg University - Campus
	Department of Energy Technology
	PV Systems Research Program
	Research Infrastructures
	Outline
	Outline
	State of the Art – Renewable Evolution
	State of the Art Development – PV Power
	State of the Art Development – PV Power
	Future Target
	How to integrate?
	PV inverter system configurations
	Market size of different PV configuration
	Examples
	Demands on PV Systems
	Failure in Photovoltaic systems
	An example of field experiences in PV application
	Failure in power electronics systems
	Scientific challenges
	Reliability, Unreliability, and Failure rate
	Why do we have failure?
	Component degradation
	Component degradation
	Outline
	Motivation for more reliable product design
	Motivation for more reliable product design
	Design for reliability of power electronics
	Key aspects in reliability analysis  
	Reliability evaluation of PV inverters
	Example of PV inverter design
	Lifetime model of components
	Power losses modeling
	Thermal modeling
	Real-field thermal stress (IGBTs)
	Real-field thermal stress (DC-link capacitors)
	Component-level analysis
	Converter-level analysis
	Converter-level analysis
	Outline
	Micro-Inverter Case Study
	Two-stage micro-inverter
	Experimental setup
	Thermal stress analysis
	Reliability evaluation
	Summary
	References
	Slide Number 51

